FAST HIGH VOLTAGE THYRISTOR SWITCHES

These solid-state switches are designed for high voltage high peak current switching applications such as shock wave generators, flash lamp drivers, crow bar circuits and surge generators. The switching modules contain a large number of reverse blocking thyristors (SCR) with a special chip architecture for high surge conditions. Several hundred of these SCR's, each with its own low-impedance gate drive, are connected in series and in parallel to ensure the extreme di/dt of up to 16 kA/µs. The safe and synchronous control of all SCR's is performed by a patented driver which provides also the high galvanic isolation necessary for high-side circuits and safety-relevant applications.

In contrast to conventional high voltage switches like spark gaps, electron tubes, gas discharge tubes and mechanical switches, thyristor switches of the series HTS-SCR show very low jitter and stable switching characteristics independent of temperature and age. The mean time between failures (MTBF) is by several orders of magnitude higher than that of the classical HV switches.

An interference-proof control circuit provides signal conditioning, auxiliary voltage monitoring, frequency limitation and temperature protection. In case of false operating conditions the switches are immediately inhibited and a fault signal is generated. Three LED's indicate the operating state. A special synchronization input/output (Sync.) allows a simple parallel connection of up to 50 switching modules to multiply the turn-on peak current capability.

The switches are triggered by a positive going pulse of 3-10 Volts. The switching behaviour will not be influenced by the trigger rise time or the trigger amplitude. After being triggered the switches remain in on-state until the load current drops below the holding current (typical thyristor behaviour). The turn-off process requires insofar a current commutation, a current limitation or a current bypass. Capacitor discharge applications with charging currents less than the holding current do not require special turn-off measures. In all other cases the switches can be turned off by a slight current reversal, which is given in the most pulsed power applications anyway. If the current reversal is higher than 10% and if the periodic duration of the current is shorter than 1 ms, a freewheeling diode (e.g. Behlke FDA) must be used to avoid hard turn-off, which can damage the switching module under certain circumstances. Please compare also the application note below.

The plastic case is the cost-effective standard package in low frequency applications with low average power. For higher load the Maximum Continuous Power Dissipation $P_{d(max)}$ can be increased by optional cooling fins which are available in different sizes for a Pd(max) of up to 1.5 kW in air (forced convection >4m/s) and approximately up to 15 kW in liquids. For further design recommendations please refer to the general instructions.

Parallel Connection

Inductive Load

Note: D1 is a fast recovery diode with Kiloamps peak current capability (E.g. Behlke Series FDA)

Specification	Symb.	Condition / Comn	nent	240-800-SCR	320-800-SCR	Unit	
Maximum Operating Voltage	V _{O(max)}	$I_{off} < 300 \text{ \sigmaADC}, T_{case} = 70^{\circ}C$		24000	32000	VDC	
Minimum Operating Voltage	V _{O(min)}				0	VDC	
Typical Breakdown Voltage	V _{br}	I_{off} > 3 mADC, T_{case} =	= 70 °C	26400	35200	VDC	
Maximum Off-State Current	I _{off}	0.8 x V _O , T _{case} = 25°C		1	00	μADC	
Galvanic Isolation	VI	HV side against control side, continuously		40000	40000	VDC	
Maximum Turn-On Peak Current	I _{P(max)}	$T_{case} / T_{fin} = 25^{\circ}C$, hal	f $t_p < 100 \ \mu s$, duty cycle <1%	80	000		
		sine. Please consult	t_p < 500 µs, duty cycle <1%	40	000		
		factory for further	t_p < 1 ms, duty cycle <1%	27	/20		
		data.	t_p < 10 ms, duty cycle <1%	16	600	ADC	
Max. Non-repetitive Peak Current	I _{P(nr)}	$T_{case} / T_{fin} = 25^{\circ}C$	Half sine single pulse, tp<200µs	16	000		
		Half sine single pulse, tp< 20µs		32000		ADC	
Max. Continuous Load Current	IL.	$T_{case} / T_{fin} = 25^{\circ}C$	Standard plastic case	2.	.88		
			With opt. CF-VII-0.5 (air >4m/s) 1)	2	28	ADC	
Typical Holding Current			T _{case} / T _{fin} = 25°C	5	50		
			$T_{case}/T_{fin}=70^{\circ}C$	3	35	mADC	
Typical On-State Voltage	V _{sat}	$T_{case} / T_{fin} = 25^{\circ}C$	0.001 x I _{P(max)}	23	31		
	Sat	$t_{\rm p}$ < 10 µs,	$0.01 \times I_{P(max)}$	27	36		
		duty cycle <1%	$0.1 \times I_{P(max)}$	45	60		
			1.0 $X I_{P(max)}$	120	160	VDC	
Typical Turn-On Delay Time	+			400	410		
Typical Turn-On Rise Time	t _{d(on)}	0.1 I _{P(max)} , 0.8 x V _{O(max} Resistive load.	$0.1 \times V_{O(max)}, 0.1 \times I_{P(max)}$	500	500	ns	
Typical rum-on Rise nime	t _{r(on)}	10-80 %		150	160		
		10-00 /0	$0.8 \times V_{O(max)}$, $0.1 \times I_{P(max)}$	400	430	00	
		- /	0.8 x V _{O(max)} , 1.0 x I _{P(max)}			ns	
Typical Turn-Off Time	t _{off} , t _q	$T_{case} / T_{fin} = 25^{\circ}C,$	0.01x I _{P(max)}		10		
		inductive load / free	$0.1 \times I_{P(max)}$		35		
		wheeling diode	1.0 x I _{P(max)}		90	μs	
Critical Rate-of-Rise of Off-State Voltage	dv/dt	@ V _{O(max)} , exponential waveform		150	200	kV/µs	
Maximum On-Time	t _{on(max)}	Depends on holding current only. See product description		unlimited			
Internal Driver Recovery Time	t _{rc}	Standard devices		1000 100			
		With option HFB				μs	
Typical Turn-On Jitter	t _{j(on)}	$V_{aux} / V_{tr} = 5.00 \text{ VDC}$			1	ns	
Max. Cont. Switching Frequency	f _(max)	Please note $P_{d(max)}$ limitations, increased $f_{(max)}$ on request		500	350	Hz	
Maximum Burst Frequency	f _{b(max)}	With option HFB, $I_{P(max)} < 16$ kA, please consult factory		1			
(Triggered)	_	With option HFB, I _{P(max)} < 3 kA, please consult factory)			10	kHz	
Maximum Continuous Power	$P_{d(max)}$	0400	rd plastic case	52	65	10/	
Dissipation			ot. CF-VII-0.5 (air stream >4m/s) 1)	450	600	Watts	
Linear Derating			rd plastic case	0.866	1.083		
		T _{case} / T _{fin} With or	ot. CF-VII-0.5 (air stream > 4m/s) 1)	10	13.33	W/K	
Temperature Range	To	Standard plastic case	9	-40	85	°C	
Coupling Capacitance	Cc	HV side against control side		210	290	pF	
Auxiliary Supply Voltage	V_{aux}	Stabilized to ∂ 5% (4.755.25 VDC)		5.00		VDC	
Auxiliary Supply Current	l _{aux}	@ f _(max)		600		mADC	
Trigger Voltage Range	V _{tr}	Switching behaviour is not influenced by trigger quality		3-10		VDC	
Fault Signal Output		Short circuit proof, source/sink current Ready = High		>4.0			
		max.10mADC. See product description. Fault = Low		<0.8		VDC	
Synchronization Input/Output		Short circuit proof, output pulse 4 VDC / 1ms -			-	-	
Operating Mode Indication		By LED's: Green=Re	-		-		
High Voltage Connection		Low inductance terminals for printed circuit boards 2)				-	
Dimensions		Standard plastic case, reduced size on request 2)		204x103x31	253x103x31		
		With option CF-VII-0.	5	204x103x66	253x103x66	mm ³	
Weight		Standard plastic case	e, reduced weight on request 2)	1950	2400		
		With option CF-VII-0.	5 1) 2)	2590	3250	g	

Notes: 1) Further thermal data for enlarged or thicker fins as well as for liquid cooling on request. 2) Please consult factory for mechanical drawings.

ORDERING INFORMATION

HTS 240-800-SCR	Thyristor switch, 24 kVDC, 8 kA (pk)
HTS 320-800-SCR	Thyristor switch, 32 kVDC, 8 kA (pk)
Option HFB	High frequency burst

Option UL94-V0

Flame retardend casting resin UL 94-V0 Option CF-VII-0.5 Copper cooling fins 0.5 mm (fins are on HV potential) Option CF-VII-1.0 Copper cooling fins 1.0 mm (fins are on HV potential)

All data and specifications subject to change without notice. Custom designed devices on request.