FAST HIGH VOLTAGE THYRISTOR SWITCHES

These solid-state switches are designed for high voltage high peak current switching applications such as shock wave generators, flash lamp drivers, crow bar circuits and surge generators. The switching modules contain a large number of reverse blocking thyristors (SCR) with a special chip architecture for high surge conditions. Several hundred of these SCR's, each with its own low-impedance gate drive, are connected in series and in parallel to ensure the extreme di/dt of up to $16 \mathrm{kA} / \mu \mathrm{s}$. The safe and synchronous control of all SCR's is performed by a patented driver which provides also the high galvanic isolation necessary for high-side circuits and safety-relevant applications.

In contrast to conventional high voltage switches like spark gaps, electron tubes, gas discharge tubes and mechanical switches, thyristor switches of the series HTS-SCR show very low jitter and stable switching characteristics independent of temperature and age. The mean time between failures (MTBF) is by several orders of magnitude higher than that of the classical HV switches.

An interference-proof control circuit provides signal conditioning, auxiliary voltage monitoring, frequency limitation and temperature protection. In case of false operating conditions the switches are immediately inhibited and a fault signal is generated. Three LED's indicate the operating state. A special synchronization input/output (Sync.) allows a simple parallel connection of up to 50 switching modules to multiply the turn-on peak current capability.

The switches are triggered by a positive going pulse of 3-10 Volts. The switching behaviour will not be influenced by the trigger rise time or the trigger amplitude. After being triggered the switches remain in on-state until the load current drops below the holding current (typical thyristor behaviour). The turn-off process requires insofar a current commutation, a current limitation or a current bypass. Capacitor discharge applications with charging currents less than the holding current do not require special turn-off measures. In all other cases the switches can be turned off by a slight current reversal, which is given in the most pulsed power applications anyway. If the current reversal is higher than 10% and if the periodic duration of the current is shorter than 1 ms , a freewheeling diode (e.g. Behlke FDA) must be used to avoid hard turn-off, which can damage the switching module under certain circumstances. Please compare also the application note below.

The plastic case is the cost-effective standard package in low frequency applications with low average power. For higher load the Maximum Continuous Power Dissipation $\mathrm{P}_{\mathrm{d}(\max)}$ can be increased by optional cooling fins which are available in different sizes for a $\operatorname{Pd}(\max)$ of up to 1.5 kW in air (forced convection $>4 \mathrm{~m} / \mathrm{s}$) and approximately up to 15 kW in liquids. For further design recommendations please refer to the general instructions.

Basic Circuits

> HTS 240-800-SCR HTS 320-800-SCR

Parallel Connection

Note: Symetrical layout is recommended for good dynamic current sharing (Wiring inductance L1 to Ln should be equal).

Inductive Load

Note: D1 is a fast recovery diode with Kiloamps peak current capability (E.g. Behlke Series FDA)

Specification	Symb.	Condition / Comment			240-800-SCR	320-800-SCR	Unit
Maximum Operating Voltage	$\mathrm{V}_{\text {(max) }}$	$\mathrm{I}_{\text {off }}<300$ PADC, $\mathrm{T}_{\text {case }}=70^{\circ} \mathrm{C}$			24000	32000	VDC
Minimum Operating Voltage	$\mathrm{V}_{\text {(min) }}$						VDC
Typical Breakdown Voltage	V_{br}	$\mathrm{I}_{\text {off }}>3 \mathrm{mADC}, \mathrm{T}_{\text {case }}=70^{\circ} \mathrm{C}$			26400	35200	VDC
Maximum Off-State Current	$\mathrm{I}_{\text {off }}$	$0.8 \times \mathrm{V}_{\text {o, }} \mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C}$					μ ADC
Galvanic Isolation	V_{1}	HV side against control side, continuously			40000	40000	VDC
Maximum Turn-On Peak Current	$\mathrm{I}_{\text {(max) }}$	$\mathrm{T}_{\text {case }} / \mathrm{T}_{\text {tin }}=25^{\circ} \mathrm{C}$, half sine. Please consult factory for further data.	$\mathrm{t}_{\mathrm{p}}<100 \mu \mathrm{~s}$, duty cycle $<1 \%$ $\mathrm{t}_{\mathrm{p}}<500 \mu \mathrm{~s}$, duty cycle $<1 \%$ $\mathrm{t}_{\mathrm{p}}<1 \mathrm{~ms}$, duty cycle $<1 \%$ $\mathrm{t}_{\mathrm{p}}<10 \mathrm{~ms}$, duty cycle $<1 \%$				ADC
Max. Non-repetitive Peak Current	$I_{P(r)}$	$\mathrm{T}_{\text {case }} / \mathrm{T}_{\text {fin }}=25^{\circ} \mathrm{C}$	Half sine single pulse, $\mathrm{tp}<200 \mu \mathrm{~s}$ Half sine single pulse, $\mathrm{tp}<20 \mu \mathrm{~s}$				ADC
Max. Continuous Load Current	I_{L}	$\mathrm{T}_{\text {case }} / \mathrm{T}_{\text {fin }}=25^{\circ} \mathrm{C}$	Standard plastic case With opt. CF-VII-0.5 (air >4m/s) 1)		2.88		ADC
Typical Holding Current			$\begin{aligned} & \mathrm{T}_{\text {case }} / \mathrm{T}_{\text {tin }}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {case }} / \mathrm{T}_{\text {fin }}=70^{\circ} \mathrm{C} \end{aligned}$				mADC
Typical On-State Voltage	$\mathrm{V}_{\text {sat }}$	$\begin{aligned} & \mathrm{T}_{\text {case }} / \mathrm{T}_{\text {tin }}=25^{\circ} \mathrm{C} \\ & \mathrm{t}_{\mathrm{p}}<10 \mu \mathrm{~s}, \\ & \text { duty cycle }<1 \% \end{aligned}$	$\begin{array}{ll} 0.001 & \mathrm{x}_{\mathrm{P}_{(\text {max })}} \\ 0.01 & \mathrm{x} \mathrm{I}_{\mathrm{P}(\text { max })} \\ 0.1 & \mathrm{x} \mathrm{P}_{\mathrm{P}_{\text {max })}} \\ 1.0 & \mathrm{x} \mathrm{P}_{\mathrm{P}(\text { max })} \end{array}$		$\begin{gathered} 23 \\ 27 \\ 45 \\ 120 \end{gathered}$	$\begin{gathered} \hline 31 \\ 36 \\ 60 \\ 160 \end{gathered}$	VDC
Typical Turn-On Delay Time	$\mathrm{t}_{\text {d(0) }}$	$0.1 \mathrm{I}_{\mathrm{P} \text { (max) }}, 0.8 \times \mathrm{V}_{\mathrm{O}(\text { max })}$ resistive load, $50-50 \%$			400	410	ns
Typical Turn-On Rise Time	$\mathrm{t}_{\text {r(on) }}$	Resistive load, $10-80 \%$	$\begin{aligned} & 0.1 \times \mathrm{V}_{\left.\mathrm{O}_{\text {max }}\right)}, 0.1 \times \mathrm{I}_{\mathrm{P} \text { (max) }} \\ & 0.8 \times \mathrm{V}_{\mathrm{O} \text { max }, 0.1 \times \mathrm{I}_{\mathrm{P} \text { max })}} \\ & 0.8 \times \mathrm{V}_{\mathrm{O}_{\text {max }},}, 1.0 \mathrm{I}_{\mathrm{P} \text { (max) }} \end{aligned}$		$\begin{aligned} & 500 \\ & 150 \\ & 400 \end{aligned}$	$\begin{aligned} & 500 \\ & 160 \\ & 430 \end{aligned}$	ns
Typical Turn-Off Time	$\mathrm{t}_{\mathrm{off}}, \mathrm{t}_{\mathrm{a}}$	$\mathrm{T}_{\text {case }} / \mathrm{T}_{\text {fin }}=25^{\circ} \mathrm{C}$, inductive load / free wheeling diode	$\begin{aligned} & 0.01 \times \mathrm{I}_{\mathrm{P}_{(\text {max })}} \\ & 0.1 \mathrm{x} \mathrm{I}_{\mathrm{P} \text { (max) }} \\ & 1.0 \times \mathrm{I}_{\mathrm{P} \text { (max) }} \\ & \hline \end{aligned}$		$\begin{aligned} & 10 \\ & 35 \\ & 90 \end{aligned}$		$\mu \mathrm{s}$
Critical Rate-of-Rise of Off-State Voltage	dv/dt	@ $\mathrm{V}_{\text {O(max) }}$, exponential waveform			150	200	kV/ $/ \mathrm{s}$
Maximum On-Time	$\mathrm{ton}_{\text {(max) }}$	Depends on holding current only. See product description			unlimited		
Internal Driver Recovery Time	t_{rc}	Standard devices With option HFB			$\begin{gathered} 1000 \\ 100 \end{gathered}$		$\mu \mathrm{s}$
Typical Turn-On Jitter	$\mathrm{t}_{\text {jon) }}$	$\mathrm{V}_{\text {aux }} / \mathrm{V}_{\text {tr }}=5.00 \mathrm{VDC}$			1		ns
Max. Cont. Switching Frequency	$\mathrm{f}_{(\text {max })}$	Please note $\mathrm{P}_{\mathrm{d}(\text { max })}$ limitations, increased $\mathrm{f}_{\text {(max) }}$ on request			500	350	Hz
Maximum Burst Frequency (Triggered)	$\mathrm{f}_{\mathrm{b} \text { (max) }}$	With option $\mathrm{HFB}, \mathrm{I}_{\mathrm{P}(\text { max })}<16 \mathrm{kA}$, please consult factory With option HFB, $\mathrm{I}_{\mathrm{P}(\text { max })}<3 \mathrm{kA}$, please consult factory)			10		kHz
Maximum Continuous Power Dissipation	$\mathrm{P}_{\mathrm{d}(\text { max })}$	$\mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C}$ Standard plastic case $\mathrm{T}_{\text {fin }}=25^{\circ} \mathrm{C}$ With opt. CF-VII- 0.5 (air stream $>4 \mathrm{~m} / \mathrm{s}) 1$)			$\begin{gathered} 52 \\ 450 \end{gathered}$	$\begin{gathered} 65 \\ 600 \end{gathered}$	Watts
Linear Derating		Above $25^{\circ} \mathrm{C}$ Standard plastic case $\mathrm{T}_{\text {case }} / \mathrm{T}_{\text {fin }}$ With opt. CF-VII- $0.5($ air stream $>4 \mathrm{~m} / \mathrm{s}) 1$)			$\begin{gathered} 0.866 \\ 10 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 1.083 \\ & 13.33 \\ & \hline \end{aligned}$	W/K
Temperature Range	To	Standard plastic case			-40... 85		${ }^{\circ} \mathrm{C}$
Coupling Capacitance	C_{c}	HV side against control side			210	290	pF
Auxiliary Supply Voltage	$\mathrm{V}_{\text {aux }}$	Stabilized to r 5\% (4.75...5.25 VDC)			5.00		VDC
Auxiliary Supply Current	$\mathrm{I}_{\text {aux }}$	@ $\mathrm{f}_{\text {(max) }}$			600		mADC
Trigger Voltage Range	$\mathrm{V}_{\text {tr }}$	Switching behaviour is not influenced by trigger quality			3-10		VDC
Fault Signal Output		Short circuit proof, source/sink current max. 10 mADC. See product description. Ready = High Fault = Low			$\begin{aligned} & >4.0 \\ & <0.8 \end{aligned}$		VDC
Synchronization Input/Output		Short circuit proof, output pulse 4 VDC / 1ms					-
Operating Mode Indication		By LED's: Green=Ready, Yellow=Trigger, Red=Fault			-		-
High Voltage Connection		Low inductance terminals for printed circuit boards 2)			-		-
Dimensions		Standard plastic case, reduced size on request 2) With option CF-VII-0.5			$\begin{aligned} & 204 \times 103 \times 31 \\ & 204 \times 103 \times 66 \\ & \hline \end{aligned}$	$\begin{aligned} & 253 \times 103 \times 31 \\ & 253 \times 103 \times 66 \\ & \hline \end{aligned}$	mm^{3}
Weight		Standard plastic case, reduced weight on request 2) With option CF-VII-0.5 1) 2)			$\begin{array}{r} 1950 \\ 2590 \\ \hline \end{array}$	$\begin{aligned} & 2400 \\ & 3250 \\ & \hline \end{aligned}$	g

Notes: 1) Further thermal data for enlarged or thicker fins as well as for liquid cooling on request. 2) Please consult factory for mechanical drawings.

ORDERING INFORMATION

HTS 240-800-SCR Thyristor switch, 24 kVDC, 8 kA (pk)
HTS 320-800-SCR Thyristor switch, 32 kVDC, 8 kA (pk)
Option HFB

High frequency burst

Option UL94-V0 Flame retardend casting resin UL 94-V0
Option CF-VII-0.5 Copper cooling fins 0.5 mm (fins are on HV potential)
Option CF-VII-1.0 Copper cooling fins 1.0 mm (fins are on HV potential)

