FAST HIGH VOLTAGE TRANSISTOR SWITCHES

DESCRIPTION
The high-voltage switches of the compact series "HTS-C" have a variable on-time and are comparable with classical solid-state relays; they are turned on as long as a control signal is applied to the control input. BEHLKE solid-state switches are actively controlled devices (no avalanche technique) and show highly reliable and reproducible switching behaviour regardless of temperature, voltage or load condition. Compared to conventional high voltage switching elements, such as gas discharge tubes and spark gaps, BEHLKE solid-state switches do not show aging effects and achieve life times by several orders of magnitude higher than any other classical high voltage switch.

The switches are very easy to handle and only require a simple +5 VDC auxiliary supply (4.5 to 5.5 VDC) and a TTL-compatible control signal. The control signal can be any positive going pulse of at least 25 ns duration and 2 to 10 volts amplitude. Due to the Schmitt-Trigger input characteristics and the very high signal amplification neither the switching behavior nor the turn-on rise time will be influenced by the waveshape of the control pulse. The recovery time after a switching cycle is less than 150 ns , making burst frequencies of up to 6 MHz possible. Burst frequencies of even up to 10 MHz can be achieved by means of the option HFB. The maximum continuous switching frequency is primarily limited by the power capability of the internal driver and by the power dissipation of the high-voltage switch. Standard switches without optional cooling and without optional HFS supply can reach several 10 kHz , depending on operating voltage and load capacitance. Higher frequencies require an additional auxiliary supply for the internal driver, which is connected by means of the option HFS. The switch must also be sufficiently cooled if the frequency depending power dissipation exceeds the specified $\mathrm{Pd}(\max)$ value. For the individual cooling requirements are various cooling features available, such as option CCS (ceramic cooling surface), CF (copper cooling fins), CF-CER (ceramic cooling fins), GCF (grounded cooling flange), ILC (indirect liquid cooling) or DLC (direct liquid cooling). In connection with option DLC the continuous switching frequency can be increased up to 3 MHz . Nevertheless, the switches of the compact series HTS-C are not primarily designed for high frequency operation and high average power dissipation. If these parameters are the main design concern, then the larger switching modules of the HTS standard series are recommended, which offer a significantly lower thermal resistance when combined with the cooling options mentioned above.

The switches are equipped with the new "intelligent" driving and control circuit VC4, which provides active input filtering, signal conditioning, auxiliary voltage monitoring, frequency limitation and temperature protection. The input filter allows an un-shielded input wiring of at least 25 cm (10") length. Undefined control signals, noise and transients are uncritical to the switch. The high-voltage MOSFET stack is always safely controlled regardless to the pulse width or waveshape of the control signal. The control circuit has 3 integrated temperature triggers. One thermotrigger with a response time of <60 seconds protects the high-voltage switch, two further sensors with <10 seconds response time are placed in the critical areas of the driver circuit. An inhibit input (pin 5 , $\mathrm{L}=$ Inhibit) allows the connection of external thermotriggers, over current detectors and / or coolant flow detectors from liquid cooling systems. The operating conditions are indicated by three built-in LEDs. In case of a fault (auxiliary voltage $<4.5 \mathrm{VDC}$, frequency $>\mathrm{f}(\max)$, case temperature $>75^{\circ} \mathrm{C}$ and / or Inhibit $=$ Low), the red LED will indicate an error and the switch is inhibited for at least 2 seconds respectively for the duration of the fault condition. At the same time a TTL compatible fault signal occurs at pin 4 (Low = Fault). In case of over temperature the switch can be locked for several minutes, depending on the individual cooling conditions. A green LED indicates "Ready for Operation" and a yellow LED indicates the on-state of the switch as well as short control pulses with a pulse duration down to 30 ns . The design concept of these switching modules offers a large selection of cooling and housing options as well as a very high flexibility regarding the adaption to individual OEM requirements. Please refer to the separate options page for some examples of individual switch solutions.

CIRCUIT DESIGN RECOMMENDATIONS

In order to achieve the minimum turn-on rise time and the best HV pulse shape, all leads and circuit paths should be of lowest possible inductance. This can be achieved by means of very wide and short circuit tracks on the printed circuit board, if necessary in several layers (multi layer PCB). Part components such as $\mathrm{R}_{\mathrm{S}}, \mathrm{C}_{\mathrm{BP}}$ and C_{B} must be "inductance-free" and should only be connected with shortest possible wires / circuit tracks. Ground conducting tracks including the logic ground must be connected to a common ground point (star-type ground). Induction loop areas of dynamically currentcarrying circuit paths should always be as small as possible. HV wiring and control circuitry should always be separated by a proper distance. For further design recommendations please refer to the general instructions.

Basic Circuits

HTS 31-06-C 3000 VDC, 64 Amps
HTS 61-03-C
HTS 71-02-C
HTS 91-02-C
HTS 121-01-C
HTS 181-01-C COMPACT SERIES
with low charge MOSFET

MOSFET TECHNOLOGY

 Serial number for

VARIABLE ON-TIME R
 T절

High temperature
proof \& non-flammable
plastic housing according
to UL94-VO. For further housing
to UL94-V. For further housing
the options page on www.behike.com.
Self latching AMP-MODU
plug. Socket is
included.
©2011-2013
All rights reserved.
Note: The standard housing
is designed for the attachment
consider housing option FH (plastic
flange housing) if the switching module is
intended for classical assembly / classical wiring

6 MHz Burst • 3 MHz Rep. Rate 5 ns Rise Time • $\boldsymbol{t}_{(\text {on })}=50$ ns ... ∞

Option PIN-C

The pigtail with AMP-MODU plug can optionally be replaced by gold plated pins for plugging into printed circuit boards. For that purpose the switch comes with soldering sockets with gold plated contact springs. The plugging solution minimizes mechanical stress at temperature cycling and makes the module exchangeable. The contact pins must not be soldered directly.

	Specification			Symbl	Condition / Com	ment	HTS	31-06-C	61-03-C	71-02-C	91-02-C	121-01-C	181-01-C	Unit
	Maximum Operating Voltage			$\mathrm{V}_{\text {(max }}$	$l_{\text {off }}<50 \mu \mathrm{ADC}, \mathrm{~T}_{\text {case }}=70^{\circ} \mathrm{C}$			± 3.0	± 6.0	± 7.2	± 9.6	± 12.0	± 18.0	kVDC
	Maximum Isolation Voltage			V_{1}	Between HV switch and control/ GND, continuously									kVDC
	Max. Housing Insulation Voltage			Vins	Between switch and housing surface, 3 minutes									kVDC
	Maximum Turn-On Peak Current			$\mathrm{IP}_{\text {(max })}$	$\mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C}$	$\mathrm{t}_{\mathrm{p}}<200 \mu \mathrm{~s}$, duty cycle <1\%		64	32	25	20	15	12	ADC
$\begin{aligned} & 0 \\ & \substack{2 \\ k \\ \\ \hline} \end{aligned}$	Maximum Continuous Load Current			IL	$\begin{aligned} & T_{\text {case }}=25^{\circ} \mathrm{C} \\ & T_{\text {fin }}=25^{\circ} \mathrm{C} \\ & T_{\text {flange }}=25^{\circ} \mathrm{C} \\ & T_{\text {inlet }}=25^{\circ} \mathrm{C} \end{aligned}$	Standard devices, forced air $4 \mathrm{~m} / \mathrm{s}$ Devices with option CF-LC, air $4 \mathrm{~m} / \mathrm{s}$ Devices with option GCF, on heat sink. Devices with option ILC, water $0.1 \mathrm{l} / \mathrm{min}$. Devices with option DLC-0. 3		1.25 3.2 3.92 3.92 4.5	$\begin{gathered} \hline 1.12 \\ 2.88 \\ 3.54 \\ 3.54 \\ 4.0 \end{gathered}$	$\begin{gathered} \hline 0.75 \\ 1.92 \\ 2.36 \\ 2.36 \\ 2.7 \end{gathered}$	$\begin{gathered} \hline 0.51 \\ 1.32 \\ 1.62 \\ 1.62 \\ 1.9 \end{gathered}$	$\begin{aligned} & 0.38 \\ & 0.97 \\ & 1.19 \\ & 1.19 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 0.36 \\ & 0.94 \\ & 1.15 \\ & 1.15 \\ & 1.3 \end{aligned}$	ADC
	Max. Continuous Power Dissipation			$\mathrm{P}_{\text {d(max }}$	$\begin{aligned} & T_{\text {case }}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {fin }}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {flange }}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {inlet }}=25^{\circ} \mathrm{C} \end{aligned}$	Standard devices, forced air $4 \mathrm{~m} / \mathrm{s}$ Devices with option CF-LC, air $4 \mathrm{~m} / \mathrm{s}$ Devices with option GCF on heat sink. Devices with option ILC, water >0.11/min Devices with option DLC-0. 3		$\begin{gathered} 10 \\ 60 \\ 100 \\ 100 \\ 300 \end{gathered}$						Watt
$\begin{aligned} & \text { İ } \\ & \text { on } \\ & \text { © } \end{aligned}$	Linear Derating				Above $25^{\circ} \mathrm{C}$	Standard devices, forced air $4 \mathrm{~m} / \mathrm{s}$ Devices with option CF-LC, air $4 \mathrm{~m} / \mathrm{s}$ Devices with option GCF, on heat sink. Devices with option ILC, water 0.1 l/min. Devices with option DLC-0. 3								W/K
	Operating Temperature Range			To	Standard devices \& options CF-LC, GCF, ILC (Opt. DLC)			-4...70 (60)						${ }^{\circ} \mathrm{C}$
	Storage Temperature Range			Ts	Switches with option ILC may require frost protection!			-50...100						${ }^{\circ} \mathrm{C}$
	Max. Permissible Magnetic Field			B	Homogeneous steady-field, surrounding the whole switch			25						mT
	Operating Voltage Range			Vo	Positive or negative voltage (depending on connection)			0-3	0-6	0-7.2	0-9.6	0-12	0-18	kVDC
	Typical Breakdown Voltage			$V_{\text {br }}$	NOTE: Vor purposes only.			3.2	6.3	7.6	10.1	12.6	18.9	kVDC
	Typical Off-State Current			loff	$25^{\circ} \mathrm{C}, @ 0.8 \times \mathrm{V}$. Lower leakage current optionally available.			<10						$\mu \mathrm{ADC}$
	Typical Turn-On Resistance			$\mathrm{R}_{\text {stat }}$	$\begin{aligned} & \mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C}, \mathrm{~T}_{\text {tange }}=25^{\circ} \mathrm{C}, \mathrm{~T}_{\text {fin }}=25^{\circ} \mathrm{C}, \\ & \mathrm{~T}_{\text {inet }}=25^{\circ} \mathrm{C} . \end{aligned}$		$\begin{aligned} & 0.1 \times \mathrm{IP}_{\mathrm{Pax})} \\ & 1.0 \mathrm{XP}_{\mathrm{P}(\max)} \end{aligned}$	2	$\begin{gathered} \hline 8 \\ 19 \end{gathered}$	$\begin{aligned} & 11 \\ & 25 \end{aligned}$	$\begin{aligned} & \hline 32 \\ & 72 \end{aligned}$	$\begin{aligned} & 38 \\ & 86 \end{aligned}$	$\begin{aligned} & \hline 64 \\ & 144 \end{aligned}$	Ohm
	Typical Propagation Delay Time			$\mathrm{t}_{\text {d(on) }}$	Resistive load, $0.1 \times \mathrm{lP}$ (max), $0.8 \times \mathrm{V}_{0 \text { (max) }}, 50-50 \%$			100						ns
	Typical Output Pulse Jitter			t	Impedance matched input, $V_{\text {aux }} / V_{\text {ctrl }}=5.00 \mathrm{VDC}$			< 500						ps
$\begin{aligned} & \text { en } \\ & 0 \\ & \hline \end{aligned}$	Typical Turn-On Rise Time			$\mathrm{t}_{\text {ron }}$	$10-90 \%$. tr can be customized in certain limits.		$\begin{aligned} & \text { max), } C_{L}=10 \mathrm{pF} \\ & \text { max), } C_{L}=10 \mathrm{pF} \\ & \text { max), } C_{L}=100 \mathrm{pF} \\ & \mathrm{~L}=0.5 \times \mathrm{I}_{\mathrm{p}(\text { max })} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 6.0 \\ & 20 \\ & <7 \end{aligned}$	$\begin{aligned} & 5.3 \\ & 7.9 \\ & 18 \\ & <7 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 8.1 \\ & 22 \\ & <8 \end{aligned}$	$\begin{aligned} & 12 \\ & 23 \\ & 88 \\ & <5 \end{aligned}$	$\begin{aligned} & 12 \\ & 21 \\ & 75 \\ & <12 \end{aligned}$	$\begin{aligned} & 12 \\ & 25 \\ & 92 \\ & <5 \\ & \hline \end{aligned}$	ns
$\stackrel{\rightharpoonup}{\mathbf{N}}$	Typical Turn-Off Rise Time			$\mathrm{t}_{\text {roff }}$	10-90\%, resistive load @ $1.0 \times \mathrm{l} \mathrm{l}_{\mathrm{m} \text { (max) }}$			< 10						ns
尽	Maximum Turn-On Time			ton(max)	No limitation, true on-off switch with relay character			infinite						ns
E	$\begin{array}{\|l} \hline \text { Minimum Turn-On Time } \\ \hline \text { Max. Continuous Switching } \\ \text { Frequency } \\ \hline \end{array}$			ton(min)	10-90\%, resistive load @ $1.0 \times \mathrm{l}_{\mathrm{p} \text { (max) }}$			50	50	50	50	50	50	ns
$\begin{aligned} & \mathbb{R} \\ & \text { 区 } \\ & \text { S } \end{aligned}$				$\mathrm{f}_{\text {(max) }}$	$@$ Vaux $=5.00 \mathrm{~V}$ Standard devices without HFS option Sw. shutdown if Standard devices with HFS supply $\mathrm{f}_{\text {(max }}$ is exceeded Opt. HFS + sufficient cooling option			$\begin{aligned} & >25 \\ & 100 \\ & 750 \end{aligned}$	$\begin{aligned} & \hline>30 \\ & 100 \\ & 750 \end{aligned}$	$\begin{aligned} & \hline>20 \\ & 100 \\ & 750 \end{aligned}$	$\begin{aligned} & >20 \\ & 100 \\ & 750 \end{aligned}$	$\begin{aligned} & >25 \\ & 100 \\ & 750 \end{aligned}$	$\begin{aligned} & >12 \\ & 100 \\ & 750 \end{aligned}$	kHz
$\underset{J}{z}$	Maximum Burst Frequency			$\mathrm{fb}_{\text {(max }}$				3	5	5	3	5	5	MHz
0	Maximum Number of Pulses / Burst			$\mathrm{N}_{\text {(max }}$	$\mathrm{f}_{6}=1 \mathrm{MHz}\left(1 \mu \mathrm{~s}\right.$ spacing). Switch shutdown if $\mathrm{N}_{\text {(max }}$ is exceeded.			200 Use burst option HFB for 2200 pulses						Pulses
$\begin{aligned} & \text { E } \\ & \text { W } \end{aligned}$	Coupling Capacitance			Cc	Switch against control side	Standard devices \& option Devices with options GCF	$\begin{aligned} & \text { ns CF, DLC } \\ & \text {, ILC } \end{aligned}$	$\begin{gathered} 8 \\ 30 \ldots 60 \end{gathered}$						pF
	Natural Capacitance			C_{N}	Between switch poles, @ $0.5 \times \mathrm{V}_{0 \text { (max) }}$			10	5	4	6	10	12	pF
	Control Voltage Range			$\mathrm{V}_{\text {ctr }}$	The $V_{\text {crir }}$ has no impact on the output pulse shape.			2...6						VDC
	Auxiliary Supply Voltage Range			Vaux	The +5 V supply is not required in the HFS mode.			$4.5 \ldots 5.5$						VDC
	Typical Auxiliary Supply Current			laux	$\mathrm{V}_{\text {aux }}=5.00 \mathrm{VDC}, \mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C}$. 0 Active current limitation above 700 mA. $@$		$\begin{aligned} & x f_{\text {max })} \\ & \text { pecified } f_{\text {(max) }} \end{aligned}$	$\begin{aligned} & 100 \\ & 500 \end{aligned}$						mADC
	Opt. HFS, Ext. Supply Voltage V1			$V_{\text {HFSS(1) }}$	Stability $\pm 3 \%$, current consumption $<0.4 \mathrm{~mA} / \mathrm{kHz} @ 25^{\circ} \mathrm{C}$			500						VDC
	Opt. HFS, Ext. Supply Voltage V2			$V_{\text {HFSS(V) }}$	Stability $\pm 3 \%$, current consumption $<0.5 \mathrm{~mA} / \mathrm{kHz}$ @ $25^{\circ} \mathrm{C}$			90						VDC
	Intrinsic Diode Forward Voltage			V_{F}	$\mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C}, \mathrm{IF}_{\mathrm{F}}=0.3 \times \mathrm{IP}_{\text {(max }}$			<10						VDC
	Diode Reverse Recovery Time			trio	Tcase $=25^{\circ} \mathrm{C}, \mathrm{IF}=0.3 \mathrm{xIP}($ max $)$, di/dt $=100 \mathrm{~A} / \mu \mathrm{s}$			<700						ns
02300	Dimensions				Standard housing Devices with option CF-LC Devices with option GCF / FH Devices with option ILC \& DLC-0.3			$\begin{gathered} 79.5 \times 38 \times 17 \\ 79.5 \times 38 \times 28 \\ 96 \times 50 \times 28 \\ 89 \times 64 \times 35 \end{gathered}$						mm^{3}
	Weight				Standard housing Devices with option CF-LC Devices with option GCF Devices with option ILC \& DLC-0. 3			$\begin{aligned} & 100 \\ & 120 \\ & 225 \\ & 400 \\ & \hline \end{aligned}$						g
0 0 0 4 3 3 4	Control Signal Inpu Logic GND / 5V Return 5V Auxiliary Supply Fault Signal Output Inhibit Signal Input LED Indicators Temperature Protection		Pin 1 / Yellow. TTL compatible with Schmitt-Trigger characteristics. Control voltage 2-10 V (3-5 V recommended for low jitter). Pin 2 / Black. The ground pin is internally connected with the safety earthing terminal (threaded insert) on bottom side. Pin 3 / Red. The 5 V input is used for rep rates up to the specified max. frequency $f_{\text {(max) }}$. Higher rep rates require option HFS. Pin 4 / Orange. TTL output, short circuit proof. Indicating switch \& driver over-heat, over-frequency, low auxiliary voltage. L = Fault. Pin 5 / Green. TTL compatible, Schmitt-Trigger characteristics for the connection of external safety circuits. L = Switch Inhibited. GREEN: "Auxiliary power good, switch OFF". YELLOW: "Control signal received, switch ON". RED: "Fault condition, switch OFF" A) Standard switches and switches with option CF, GCF: Thermo trigger $75^{\circ} \mathrm{C}$, response time $<60 \mathrm{~s} @ 3 x P d(\max), \Delta \mathrm{T}=25 \mathrm{~K}\left(50\right.$ to $\left.75^{\circ} \mathrm{C}\right)$. Separate driver protection. B) Switches with option DLC: $65^{\circ} \mathrm{C}$, response time $<3 \mathrm{~s} @ 3 x P d(\max), \Delta \mathrm{T}=25 \mathrm{~K}\left(40\right.$ to $\left.65^{\circ} \mathrm{C}\right)$, coolant flow $>31 / \mathrm{min}$. Separate driver protection.											
	HTS 31-06-C ${ }^{\text {a }}$ Fast HV Transis		FasthV Transistor Swith, 3kV, 64 A		Option			Option CCS ${ }^{\text {ce }}$		Ceramic Cooling Surface. Pedmax can be increased by the factor 2 to 3 .				
k	HTS 61-03-C				Option			Option CF-LC Co		Oopper Cooing Fins. Pdymax Can be increased by the factor 3 to 10.				
\%	HTS 71-02-C				Option HFS	High reauuency Switching (two auxiliary supply inputs V1 \& V2		Option GCF		Girunded Coding Fange (copper). PPraxican be increased by the factor 3 3t 15.				
8	$\begin{array}{\|l\|} \hline \text { HTS 91-02-C } \\ \hline \text { HTS 121-01-C } \\ \hline \end{array}$	FasthVV Transistor Sxich, 9kV, 20A				Low Pass. Input filter for increased noise immunity.		Option ILC						
8		Fast HV Transistor Swith, 12kV, 15 A			Option UFTR Ultre	Fast Thermotrigger. Response time	or shut down < 5 s.	Option	C Diea	(i)				
					Fast Thermosensor. Response time	<5s. NTC $10 \mathrm{k} / \pm$	\% FOR F	THER PROI						
- change without nolice. Please visit www.behke.com for up-dales. 181-01-C-RS / Revision 30-03-2013 ©2013 All right reserved														

