FAST HIGH VOLTAGE TRANSISTOR SWITCHES

These MOSFET switches are designed for general high voltage switching applications such as deflection and acceleration grid drivers and electrical test equipment. The switching modules incorporate all features of the well known HTS switch family: Easy handling, high reliability, low jitter and reproducible switching behaviour. The HTS-LC2 series represents the second generation of Behlke low capacitance switches. The HV transient immunity of the HTS-LC2 series has been improved significantly and is now comparable with that of the standard HTS series.

The switch is turned-on by a positive going control signal of 3 to 6 Volts at the control input (pin1). The shielded control cable is terminated by an internal 100 Ohm resistor. The on-time may simply be controlled by the input control pulse width and can range from 200 ns to infinity. The control electronics of the switching module requires an auxiliary supply of +4.75 to +9.0 VDC (pin 3). To ensure a safe off-state of the switch, the auxiliary supply should be permanently present, especially in the case of possible voltage fluctuations or fast transients at the high voltage input.

An interference-proof driver and control circuit provides signal conditioning, auxiliary voltage monitoring, frequency limitation and temperature protection. Any false operating condition (under voltage, over frequency or over temperature) will result in immediate switch deactivation and a TTL compatible fault signal ("L") will be generated at pin 4 of the control plug. All operating conditions (pulse, on, off, fault) are indicated by LED's.

The high frequency burst operation (>100 pulses $/ 100 \mu s$) requires the option "HFB" (High Frequency Burst) respectively "I-HFB" (Integrated High Frequency Burst), depending on the number of pulses to be generated. In case of option HFB, external buffer capacitors must be connected to the internal driver circuitry. A continuous high frequency operation above the specified maximum switching frequency requires the option "HFS" (High Frequency Switching). With the help of this option, two external supply voltages can be connected to increase the power capability of the internal switch driver for higher switching frequencies. Those external voltages are +15 V and $+380-480 \mathrm{~V}$, depending on switch model. The +5 V auxiliary supply is not required then.

Due to high galvanic isolation, the switches may also simply be operated in floating circuits or in high-side switching applications without any additional isolation transformer or optical coupler. Several housing and cooling options are available to meet individual design requirements. Please refer to product survey "C3 Variable On-Time, Low Coupling Capacitance, MOSFET" or consult BEHLKE for more details.

HTS 501-20-LC2

$50 \mathrm{kV} / 200 \mathrm{~A}$
70 kV / 200 A HTS 901-20-LC2 90 kV / 200 A

Technical Data

	Specification	Symb.	Condition / Comment			HTS 501-20-LC2	HTS 701-20-LC2	HTS 901-20-LC2	Unit
	Maximum Operating Voltage	$\mathrm{V}_{0 \text { (max) }}$	$\mathrm{l}_{\text {off }}<50 \mu \mathrm{ADC}, \mathrm{T}_{\text {case }}=70^{\circ} \mathrm{C}$			50	70	90	kVDC
	Maximum Isolation Voltage	VI	Between HV switch and control input / GND			80	100	120	kVDC
	Max. Housing Insulation Voltage	VINS	Between switch and housing surface, 3 minutes				150		kVDC
	Maximum Turn-On Peak Current	$\mathrm{IP}_{(\text {max })}$	$\mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C}$	$\mathrm{t}_{\mathrm{p}}<200 \mu \mathrm{~s}$, duty cycle <1\% $\mathrm{t}_{\mathrm{p}}<1 \mathrm{~ms}$, duty cycle <1\% $\mathrm{t}_{\mathrm{p}}<10 \mathrm{~ms}$, duty cycle $<1 \%$ $\mathrm{t}_{\mathrm{p}}<100 \mathrm{~ms}$, duty cycle <1\%			$\begin{gathered} \hline 200 \\ 118 \\ 72 \\ 54 \end{gathered}$		ADC
	Maximum Continuous Load Current	lL	$\begin{aligned} & \mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {fluid }}=25^{\circ} \mathrm{C} \end{aligned}$	Standard model Option DLC - 2.0 / 2.8 / $3.6^{1)}$ Option DLC - 6.0 / 8.4 / $10{ }^{1)}$		$\begin{gathered} \hline 1.26 \\ 9.5 \\ 16.5 \end{gathered}$	$\begin{gathered} \hline 1.26 \\ 9.5 \\ 16.5 \end{gathered}$	$\begin{gathered} \hline 1.26 \\ 9.5 \\ 16.5 \end{gathered}$	ADC
	Max. Continuous Power Dissipation	$\mathrm{P}_{\mathrm{d}(\text { max })}$	$\begin{aligned} & \mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {fluid }}=25^{\circ} \mathrm{C} \end{aligned}$	Standard model Option DLC - 2.0 / 2.8 / $3.6^{1)}$ Option DLC - 6.0 / 8.4 / $10{ }^{1)}$		$\begin{gathered} \hline 35 \\ 2000 \\ 6000 \end{gathered}$	$\begin{gathered} \hline 49 \\ 2800 \\ 8400 \end{gathered}$	$\begin{gathered} \hline 63 \\ 3600 \\ 10800 \end{gathered}$	Watts
	Linear Derating		Above $25^{\circ} \mathrm{C}$	Standard model Option DLC-2.0 / 2.8 / $3.6^{1)}$ Option DLC - 6.0 / 8.4 / $10{ }^{11)}$		$\begin{aligned} & 0.777 \\ & 44.44 \\ & 133.3 \end{aligned}$	$\begin{aligned} & 1.088 \\ & 62.22 \\ & 186.6 \end{aligned}$	$\begin{gathered} 1.4 \\ 80 \\ 240 \end{gathered}$	W/K
	Operating Temperature Range	To					-40... 70		${ }^{\circ} \mathrm{C}$
	Storage Temperature Range	Ts					-40... 90		${ }^{\circ} \mathrm{C}$
	Maximum Auxiliary Supply Voltage	$V_{\text {aux(max) }}$					9		VDC
	Permissible Operating Voltage Range	Vo				0... 50	0...70	0... 90	kVDC
	Typical Breakdown Voltage	Vbr	CAUTION: V_{w} is a test parameter only for quality control purposes and is no applicable in normal operation!$l_{\text {off }}>500 \mu \mathrm{ADC}$			53	74	95	kVDC
	Typical Off-State Current	loff	0.8 xV o, $\mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C}$, lower leakage current on request				40		$\mu A D C$
	Typical Static On-Resistance	$\mathrm{R}_{\text {stat }}$	$\mathrm{t}_{\mathrm{p}}<1 \mu \mathrm{~s}$, duty cycle $<1 \%$ $0.1 \mathrm{x} \mathrm{IP}_{\mathrm{P} \text { max })}, \mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C}$ $1.0 \mathrm{x} \mathrm{IP(} \mathrm{\max)},, T_{\text {case }}=25^{\circ} \mathrm{C}$ $1.0 \mathrm{xIP} \mathrm{I}_{(\text {max })}, T_{\text {case }}=70^{\circ} \mathrm{C}$			$\begin{gathered} \hline 9 \\ 10.5 \\ 22 \end{gathered}$	$\begin{gathered} 12.5 \\ 15 \\ 31 \end{gathered}$	$\begin{aligned} & 16 \\ & 19 \\ & 40 \end{aligned}$	Ohm
	Typical Turn-On Delay Time	$\mathrm{td}_{\text {(on) }}$	Resistive load, $0.1 \times \mathrm{IP}$ (max), $0.8 \times \mathrm{Vo}_{\text {(max) }}, 50-50 \%$				250		ns
	Typical Turn-On Rise Time	tron)				$\begin{aligned} & 12 \\ & 32 \\ & 35 \end{aligned}$	$\begin{aligned} & 14 \\ & 45 \\ & 50 \end{aligned}$	$\begin{aligned} & 15 \\ & 56 \\ & 62 \end{aligned}$	ns
	Typical Turn-Off Rise Time	toff, tq	Resistive load, $10-90 \%$ $0.8 \times \mathrm{V}_{0(\text { max })}, 0.1 \times \mathrm{IP}_{(\text {max })}$ $0.8 \times \mathrm{V}_{0(\text { max })}, 1.0 \times \mathrm{IP}_{(\text {max }}$				$\begin{aligned} & 30 \\ & 80 \end{aligned}$		ns
	Maximum On-Time	ton(max)					Infinitely		
	Minimum On-Time	ton(min)	$\mathrm{t}_{\mathrm{n}(\text { min })}$ can be customized. Please consult factory.				300		ns
	Maximum Off-Time	$\mathrm{toffif(max)}^{\text {a }}$					Infinitely		
	Minimum Off-Time	toff(min)	toff(min) can be customized. Please consult factory.				300		ns
	Typical Turn-On Jitter	$\mathrm{t}_{\text {j}}(\mathrm{on})$	$\mathrm{V}_{\text {aux }} / \mathrm{V}_{\text {tr }}=5.00 \mathrm{VDC}$				3		ns
	Max. Continuous Switching Frequency	$\mathrm{f}_{\text {(max) }}$	$V_{\text {aux }}=5.00 \mathrm{VDC}, \mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C}$, switch will be turned off, if $f($ max $)$ is exceeded		Standard Option HFS	0.8	$\begin{aligned} & 0.6 \\ & 100 \end{aligned}$	0.5	kHz
	Maximum Burst Frequency	$\mathrm{fb}_{\text {(max }}$	CAUTION: Applications with long lasting high frequency bursts may require special cooling measures to prevent MOSFET overheating. Please consult factory.				2		MHz
	Maximum Number of Pulses / Burst	N	@ $\mathrm{fb}_{\mathrm{b} \text { (max) }}$ NOTE: Option HFB requires extermal buffer capacitors with a voltage rating of $>630 \mathrm{VDC}$ and a capacitance of $\approx 100 \mathrm{nF}$ per additional pulse. The buffer capacitors are internaly monitored.		Standard Option I-HFB Option HFB		$\begin{gathered} \hline>100 \\ >1000 \\ >10000 \end{gathered}$		Pulses
	Coupling Capacitance	C_{c}	HV side against control side			33	46	60	pF
	Natural Capacitance	C_{N}	Between switch poles			54	40	30	pF
	Auxiliary Supply Voltage Range	$\mathrm{V}_{\text {aux }}$	5.00 VDC recommended for best driver efficiency				4.75-5.25		VDC
	Intrinsic Diode Forward Voltage	V_{F}	$\mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~A}$			40	57	74	VDC
	Diode Reverse Recovery Time	tric	CAUTION: Intinisicidiodes must not be besed in nomal operation. Inductive loadrequires fast free-wheeling diodes (series FDA) in parallel to the switch!$\mathrm{IF}=10 \mathrm{~A}$				<250		ns
	Auxiliary Supply Current	laux	$\mathrm{V}_{\text {aux }}=5.00 \mathrm{VDC}, \mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C}$		$\begin{aligned} & 0.1 \mathrm{xf} \mathrm{f}_{\text {max }} \\ & @ \mathrm{f}_{\text {(max }} \end{aligned}$	$\begin{aligned} & 250 \\ & 800 \end{aligned}$	$\begin{aligned} & 350 \\ & 800 \\ & \hline \end{aligned}$	$\begin{aligned} & 450 \\ & 800 \end{aligned}$	mADC
	Control Voltage Range	$\mathrm{V}_{\text {tr }}$	4-6 VDC recommended for best EMC				3-10		VDC
$\begin{aligned} & 9 \\ & 0 \end{aligned}$	Dimensions		Standard housing, without pigtails			$252 \times 200 \times 68$	$312 \times 200 \times 68$	$372 \times 200 \times 68$	mm^{3}
	Weight		Standard housing			3700	5200	6700	g

Recommended Options:

Option HFB Option I-HFB Option HFS Option LP Option MIN-ON Option MIN-OFF Option DLC - X.X Option TH Option SEP-C

High Frequency Burst: Improved burst capability of driver by means of external buffer capacitors. Recommended for burst operation with >100 pulses within a burst of <100 $\mu \mathrm{s}$ duration. Integrated High Frequency Burst: Improved burst capability by integrated buffer capacitors. For moderate burst requirements ($10-100$ pulses within a burst of $<100 \mu \mathrm{~s}$ duration). High Frequency Switching: Connector for additional auxiliary voltages (+12 VDC and +350 VDC to +450 VDC, model depending). Necessary for operation above standard $f_{\text {(max) }}$. Low Pass: Low pass filter at the control input. Propagation delay time will be increased by $\sim 200 \mathrm{~ns}$. Improved noise immunity and less critical wiring in high speed applications. Minimum On-Time: Individually increased "Minimum On-Time" to avoid unwanted triggering by input noise during this time. Please indicate the demanded ton(min) with order. Minimum Off-Time: Individually increased "Minimum Off-Time" to avoid unwanted triggering by input noise during this time. Please indicate the demanded $\mathrm{t}_{\mathrm{fff}(\mathrm{min})}$ with order. Direct Liquid Cooling: Internal liquid channel in direct contact with the power semiconductors. Excellent cooling method for very high voltages. GALDEN® \& non-conductive liquids only. Tubular Housing: Self-supporting axial housing. Attachment \& HV connection by M12 bolts at the tube ends. Dimension $\varnothing 90 \times 350, \varnothing 90 \times 450$ or $\varnothing 90 \times 550 \mathrm{~mm}$ (depending on switch model). Separate Control Unit: Control unit (dimension $79 \times 38 \times 25 \mathrm{~mm}^{3}$) separated from high-voltage switching unit. 1 m connecting cable between switch and control (standard if option TH is ordered).

