

ARTESYN MODULAR HIGH POWER SYSTEM

Up to 24000 Watts

Designed for a wide range of medical, industrial, lighting/ horticulture and semiconductor applications, Advanced Energy's iHP configurable precision power system provides accuracy, resolution and stability as either a programmable voltage or current source. It provides up to 24 kW in 3 kW increments and can be configured for up to 8 outputs using a wide variety of plug-in modules that address a large range of voltages and currents.

Safety approvals secured by Advanced Energy eliminate the need for an isolation transformer in medical equipment. The iHP power system also has industrial safety approvals, including compliance to the SEMI F47 standard for semiconductor processing equipment.

The iHP power system offers developers either an analog or digital interface to their system supporting standard communications protocols, while a software graphical user interface (GUI) allows for easy configuration and user Dashboard creation. For Horticulture customers, detailed scheduling and control software is available. For non-medical applications, a smaller and lighter rack is now available using the same plug-in modules.

SPECIAL FEATURES

- 5 years manufacturer's warranty
- Multi output intelligent and modular high power system
- Standard 19" rack
- Outputs parallel up to 1600 A
- Outputs series up to 1000 V
- 100% digital control
- Outputs program as voltage or current source

- Versatile input configurable to:
 - Low line 180-264 Vac single phase and 3-phase
 - · High line 342-528 Vac 3-phase
 - High line 540-660 Vac 3-phase (iHP24C)
- Medical Safety Approved on iHP12 and iHP24, not on iHP24S or iHP24C
- Analog Interface either 0-5 V or 0-10 V for both current and voltage. Compatible with, but not limited to Priva, Argus, TrollMaster and Hortimax controllers, In lighting applications

Note 1: Digital Ethernet UDP, RS485, CAN or Ethernet TC/IP with PowerPro Connect Module option. Command protocol is patterned to PMBus specification using a proprietary transaction protocol. DATA SHEET

iHP24

Total Power:

Up to 24 KW per 3U rack. Up to 144 KW in an 18U Cabinet

Input Voltage

iHP12, iHP24 and iHP24S: 180-264 Vac 342-528 Vac Single or 3-Phase for iHP12 3-Phase for iHP24 and iHP24S

iHP24C: 540-660 Vac 3-Phase for iHP24C

of Outputs:

Up to 8

iHP

- Flexible digital control interfaces (Note 1)
- Air cooled
- Semi F47 compliance (except for iHP24S)
- Field upgradeable firmware
- Programmable slew rate
- Fast current slew rate up to 200 Hz
- Active power factor correction
- User defined command profiles
- Very low THD compared to LED Drivers when used in lighting applications

SAFETY

$\begin{array}{l} \textbf{SAFETY FOR ALL MODELS} (except for iHP24S and iHP24C models) \end{array}$

- UL 62368-1
- CSA C22.2 No. 62368-1
- EN62368-1
- EN60601-1
- IEC60601-1
- UL 60601-1 1st Edition; ANSI/AAMI ES60601-1 (2005 + C1:09 + A2:10) "3rd Ed"
- CAN/CSA-C22.2 No. 60601-1 (2008)
- IEC60601
- UL/cUL listed to UL 508 and CSA C22.2 No. 107.1-01, CSA to CSA C22.2 No. 107.1-01

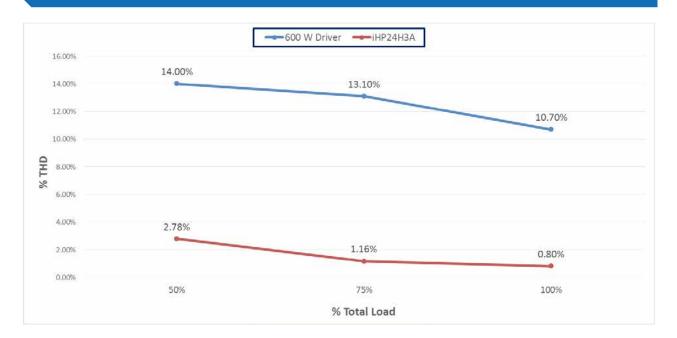
- CB Certificate and Report
- CE LVD (EN62368-1 + RoHS)

SAFETY FOR CANADIAN MODEL iHP24C3A ONLY

- UL60950-1 with UL62368-1
- CSA C22.2 No 62368-1

SAFETY FOR IHP SHORT RACK IHPS24H3A & IHPS24L3A

- UL 62368-1 Listed
- CSA 62368-1 Listed
- EN 62368-1
- IEC 62368-1
- CE (LVD+RoHS), EN 62368-1


IHP24 ELECTRICAL SPECIFICATIONS

Input Parameter	19" Rack 24 KW strapped as 3-phase 380/480 Vac Nominal (iHP24H3A/iHP24SH3A)	19" Rack 24 KW strapped as 3-phase 208/240 Vac Nominal (iHP24L3A/iHP24SL3A)	19" Rack 24 KW strapped as 3-phase 600 Vac Nominal (iHP24C3A)				
Input range	342 Vac to 528 Vac (Nominal rating 380/480 Vac)	187.5 Vac to 264 Vac (Nominal rating 208/240 Vac)	540 Vac to 660 Vac (Nominal rating 600 Vac)				
Number of phases	3-phase (Wye or (3-phase and 1 pro	3-phase Wye 5 wire total (3-phases, neutral and protective earth ground)					
Frequency		47-63 Hz					
Phase detection	House	Loss of phase will inhibit unit off. keeping/comms must continue with pha	ase loss.				
Max current/phase	51 A @ 342 Vac 40 A @ 432 Vac	84 A @ 187.5 Vac	29 A @ 312 Vac				
Undervoltage detection	Nominal input locked on at turn-on. L	Nominal input locked on at turn-on. Undervoltage shutdown at 15% below nominal. Turn-on at 12% below nomir Not to interfere with SEMI F47 specs.					
Current inrush		2.5 x Max input current					
Power factor		> 0.98 @ full load and nominal line					
Harmonic distortion	THD	< 13%, PWHD < 22% (refer to EN 61000	-3-12)				
Line interruption	Designed to meet SEMI F47-0	706, 53, 58, S14 at nominal input voltag	es (Non "S" models don't apply)				
Input leakage current	< 2.5 mA (1	Note for fixed condition 3rd edition leak	age = 5 mA)				
Power switch		Front panel power switch provided					
Input protection		Internal fuse (not user serviceable)					
Input overvoltage protection	Up to	115% of nominal input shall not damag	ge unit				
Phase imbalance		≤ 5%					
Rack parallel		Up to 6 racks (144 KW)					
Efficiency	94.1% @ 3P 380 Vac 50% Load 94.8% @ 3P 480 Vac 50% Load	94.2% @ 3P 208 Vac 50% Load 94.7% @ 3P 240 Vac 50% Load	> 90% @ 3P 600 Vac full load				
Standby voltage		5 V					
Standby regulation		4.75 - 5.25 V					
Standby max current		1 A					

TOTAL HARMONIC DISTORTION COMPARISON

% Load	600 W Driver	iHP24H3A and iHP24SH3A
50%	14.00%	2.78%
75%	13.10%	1.16%
100%	10.70%	0.80%

Notes:

Roo W driver data is taken from published datasheet.
RiH024H3A model data was captured at a nominal input of 480V 3-Phase at room ambient.
The input voltage of 277VAC is the single phase equivalent used when operating on 2 phases of a 480V 3-Phase utility service.

SAFETY TABLE

Model Number	Model Code	Module Nominal Voltage	Safety Compliance	Maximum Total Voltage Allowed
73-936-0012	SL	≤ 48 V	Medical 2MOPP*	300 V
73-936-0024	SQ		Medical 2MOOP**, ITE	400 V
73-936-0048	SW			
73-936-0080	S8	≥ 80 V	Medical 2MOPP	600 V
73-936-0125	S1		Medical 2MOOP	800 V
73-936-0200	SA		Medical 2MOOP	800 V
73-936-0250	S2		ITE	1000 V

Note: *-2MOPP or 2 × MOPP (Means of Patient Protection) ** -2MOOP or 2 × MOOP (Means of Operator Protection

IHP12 ELECTRICAL SPECIFICATIONS

Input Parameter	19" Rack 12 KW strapped as 1-phase 200/220/230/240 Vac Nominal (iHP12L1A)	Type: 19" Rack 12 KW strapped as 3-phase 200/208/240 Vac Nominal (iHP12L3A)	Type: 19" Rack 12 KW strapped as 3-phase 380/480 Vac Nominal (iHP12H3A)			
Input range	180 Vac to 264 Vac (Nominal rating 200/220/230/240 Vac)	180 Vac to 264 Vac (Nominal rating 200/208/240 Vac)	342 Vac to 528 Vac (Nominal rating 380/480 Vac)			
Number of phases	1-phase 3-wire total (2-phase and 1 protective earth ground)	elta) 4-wire total ective earth ground)				
Frequency		47-63 Hz				
Phase detection	Loss of phase will inhibit unit off. Housekeeping/comms must continue with phase loss.					
Max current/phase	75 A @ 180 Vac	44 A @ 180 Vac	23 A @ 342 Vac 19 A @ 432 Vac			
Undervoltage detection	Nominal input locked on at turn-on. Undervoltage shutdown at 15% below nominal. Turn-on at 12% below nomin Not to interfere with SEMI F47 specs.					
Current inrush		2.5 x Max input current				
Power factor	> 0.99 @ full load and nominal line	> 0.98 @ full load a	and nominal line			
Harmonic distortion	THD < 3	3.5%, PWHD < 22% (refer to EN 61000-3	-12)			
Line interruption	Designed to meet	SEMI F47-0706, 53, 58, S14 at nominal	input voltages			
Input leakage current	< 1.25	5 mA	<2.5 mA			
Power switch		Front panel power switch provided				
Input protection		Internal fuse (not user serviceable)				
Input overvoltage protection	Up to 1	.15% of nominal input shall not damage	unit			
Phase imbalance	NA	≤ 5%	≤ 5%			
Rack parallel		Up to 6 racks (72 KW)				
Efficiency	> 91% @ 1P 240 Vac full load > 90% @ 1P 208 Vac/200 Vac full load	> 91% @ 3P 240 Vac full load > 90% @ 3P 208 Vac/200 Vac full load	> 90% @ 3P 380 Vac full load > 91% @ 3P 480 Vac full load			
Standby voltage		5 V				
Standby regulation		4.75 - 5.25 V				
Standby max current		1 A				

EMC/IMMUNITY

EMC	ALL MODELS (except Canadian model iHP24C3A)
ESD	EN61000-4-2 (IEC1000-4-2)
Fast Transients	EN61000-4-4 (IEC1000-4-4)
Surge Immunity	EN61000-4-5 (IEC1000-4-5)
Conducted Immunity	EN61000-4-6 (IEC1000-4-6)
Radiated Immunity	EN61000-4-3 (IEC1000-4-3)
Power Frequency Magnetic Field	EN61000-4-8
Voltage Dips, Short Interruptions and Voltage Variations	EN 61000-4-34
Conducted Emission	EN55011, FCC CFR 47, Part 15, Subpart B
Radiated Emission	EN55011, FCC CFR 47, Part 15, Subpart B

EMC/IMMUNITY (CONTINUED)

EMC	CANADIAN MODEL iHP24C3A ONLY
ESD	IEC 61000-4-2 Level 4 Criteria A, Air discharge 15kV, Contact Discharge 8kV
Fast Transients	IEC 61000-4-4 Level 3 Criteria A 2kV
Surge Immunity	IEC 61000-4-5 Level 3 Criteria A, Common Mode 2kV, Differential Mode 1Kv
Conducted Immunity	IEC 61000-4-6 Level 3 Criteria A; 150kHz-80MHz, 10Vrms
Radiated Immunity	IEC 61000-4-3 Level 3 Criteria A; 80MHz-1GHz, 10V/M, 80% Modulation (1KHz)
Power Frequency Magnetic Field	IEC 61000-4-8 Criteria A; 30A/Meter
Voltage Dips, Short Interruptions and Voltage Variations	IEC 61000-4-11 100% dip, 1 cycle (20ms), Self Recoverable (Hold UP only 14mS on Short Rack and Liquid Cooled
Conducted Emission	EN55011, FCC CFR 47, Part 15, Subpart B
Radiated Emission	EN55011, FCC CFR 47, Part 15, Subpart B

ALL MODELS (except Canadian model iHP24C3A, iHPS24H3A & iHPS24L3A)

Category	Standard	Frequency	Level / Limits	PSU Performance Criteria ¹
	EN 55011/CISPR11	30M -1GHz	Class A	5dB Margin
Radiated Emissions	FCC CFR 47, Part 15, Subpart B	30M-1GHz >1GHz (see standard)	Class A	5dB Margin
Conducted Emissions	EN 55011/CISPR11	150k-30MHz	Class A	5dB Margin
Power Line Harmonics ²	EN 61000-3-12	See standard	See standard	
Voltage Fluctuations ²	EN 61000-3-11	See standard	See standard	
Radiated Immunity	EN 61000-4-3	80M-2GHz	10 V/meter	А
ESD	EN 610	00-4-2	8 KV contact, 15 KV Air	А
Electrical Fast Transient	EN 610	00-4-4	+/- 4 KV	А
	EN 610	00-4-5	2KV DM, 4KV CM	А
Surge AC		200.41	2KV DM, 2KV CM	А
	IEEE C	JOZ.41	6 KV, CM & DM	Fail Safe
Conducted Susceptibility	EN 61000-4-6	150 KHz – 80 MHz	10Vrms	А
		>95% reduction for	10mS	А
	EN 61000-4-34 SEMI F47	>30% reduction for	500mS	А
		>95% reduction for	500mS	С
Voltage Dips and Sags ²		20% reduction for	5000ms	А
		30% reduction for	500ms	А
		50% reduction for	200ms	А
		60% reduction for	200ms	В

Notes: ¹ Performance Criteria as defined by EN 300-386 V1.3.3 ² Applies to AC power supplies only. Short Rack and Short Rack inside Liquid Cooled rack do not meet 1 cycle hold-up ³ 24KW load conducted EMI and 12KW load radiated EMI tests using 48V modules only. 3KW load comparative test for other module variants is ok.

iHP SHORT RACK (iHPS24H3A & iHPS24L3A)

Category	Standard	Frequency	Level / Limits	PSU Performance Criteria ¹
	EN 55011/CISPR11	30M -1GHz	Class A	-
Radiated Emissions	FCC CFR 47, Part 15,	30M-1GHz		-
	Subpart B	>1GHz (see standard)	Class A	-
Conducted Emissions	EN 55011/CISPR11	150k-30MHz	Class A	
Power Line Harmonics ²	EN 61000-3-12	See standard	See standard	
Voltage Fluctuations ²	EN 61000-3-11	See standard	See standard	
Radiated Immunity	EN 61000-4-3	80M-2GHz	10 V/meter	A
500	EN 010		8 KV contact,	
ESD	EN 610	000-4-2	15 KV Air	A
Electrical Fast Transient	EN 610)00-4-4	+/- 4 KV	A
	EN 610	000-4-5	2KV DM, 4KV CM	A
Surge AC		200.44	2KV DM, 2KV CM	А
	IEEE	062.41	6 KV, CM & DM	Fail Safe
Conducted Immunity	EN 61000-4-6	150 KHz – 80 MHz	10Vrms	A
		>95% reduction for	0.5 Cycle	A
		100% reduction for	0.5 Cycle (45deg phase angle)	A
		100% reduction for	1 Cycle (0deg phase angle)	С
Voltage Dips and Sags ²	EN 61000-4-34	30% reduction for	25/30 Cycles ³	С
		30% reduction for	25/30 Cycles ³ (0deg phase angle)	С
		>95% reduction for	250/300 Cycles ⁴	С
		100% reduction for	250/300 Cycles ⁴	С
Power Frequency Magnetic Field	IEC 61000-4-8	See standard	See standard	

Notes: ¹ Performance criteria of EN61000-4-X standards as defined by EN55024 ² Applies to AC power supplies only. ³ 24KW load conducted EMI and 12KW load radiated EMI tests using 48V modules only. 3KW load comparative test for other module variants is ok. ⁴ 25 cycles for 50Hz test, 30cycles for 60 Hz test ⁵ 250 cycles for 50Hz test, 300cycles for 60 Hz test

OUTPUT – GENERAL SPECS

Parameter								
MODULE CODE	SL	SQ	ST	SW	S8	S1	SA	S2
# Outputs	1	1	1	1	1	1	1	1
Nominal O/P (V)	12.0 V	24.0 V	32.0 V	48.0 V	80.0 V	125.0 V	200.0 V	250.0 V
Max Power (W)	2400 W	2880 W	2880 W	3000 W	3000 W	3000 W	3000 W	3000 W
O/P Current Range (A)	0.0 A - 200 A	0.0 A - 120 A	0.0 A - 90 A	0.0 A - 62.5 A	0.0 A - 37.5 A	0.0 A -24 A	0.0 A - 15.0 A	0.0 A -12 A
Power Density (W/cu-in)	32.5	39.0	39.0	40.6	40.6	40.6	39	40.6
Module Input Voltage				40	0 V			
Module Operating Temp			-0	°C to +65 °C; Ba	aseplate Temp T	BD		
Series Operation		250 V modu	ules can be con	nected in series	up to 800 V for	Medical and 10	00 V for ITE	
Parallel Operation	Up to 8 modules can be paralleled in 1 rack, with up to 6 racks connected in parallel. Single Wire Parallel connection will be provided as part of configuration							
Parameter								
MODULE CODE			T	W			T3	
# Outputs				1			1	
Nominal O/P (V)			5	0 V			300 V	
Max Power (W)			120	00 W			12000 W	
O/P Current Range (A)			0 -2	70 A			0 -50 A	
Power Density (W/cu-in)			Т	BA			TBA	
Module Input Voltage		395V ± 5V						
Module Operating Temp		0°C to +65°C						
Series Operation	No series operation offering							
Parallel Operation		Up to two					6) racks connector of configuration.	

OUTPUT - MODULE IN VOLTAGE SOURCE MODE

Voltage Source	Voltage Source							
MODULE CODE	SL	SQ	ST	SW	S8	S1	SA	S2
Nominal Output (V)	12	24	32	48	80	125	200	250
Setting Range (V)	0.6 V - 14.4 V	1.2 V - 28.8 V	1.6 V - 38.4 V	2.4 V - 57.6 V	4.0 V - 96.0 V	6.25 V - 150.0 V	10.0 V - 240.0 V	12.5 V - 300.0 V
Low Frequency RMS Ripple (mV)	24	48	64	96	160	250	500	500
Line Regulation (mV)	12	24	32	48	80	125	200	250
Load Regulation (mV)	24	48	64	96	160	250	400	500
P-P Ripple (mV)	60	120	160	240	400	625	1250	1250
Drift (Temp Stability)		±0.05% of I _{out} Rated over 8 hours, after 30 minute warm up, constant Line, Load and Temp						
Temp Coefficient		200						
Pgm Accuracy (mV)		Digital: 0.1% of Nominal Output Voltage; Analog: 1.0% of Nominal Output Voltage						
Pgm Resolution (mV)		SL=TBD; SQ=1; SW=2; S8=8; S1=6; S2=21						
Meas Accuracy (mV)		0.2% + 0.2% of Nominal Output Voltage						
Meas Resolution	SL=TBD; SQ=1; SW=2; S8=8; S1=6; S2=21							
Transient Response		Max 5.0% deviation from current set point must recover within 1mS for a 50% step load.						
Current Sense Method		Inte	ernal Shunt; Ex	ternal Shunt ca	n be used for b	etter temperature	stability.	
Voltage Source								
MODULE CODE				TW			T3	
Nominal Output (V)				50			300	
Setting Range (V)				2.5 -60			15.0 -360	
Low Frequency RMS	Ripple (mV)			100			600	
Line Regulation (mV)				50			300	
Load Regulation (mV))			100			600	
P-P Ripple (mV)				250			1500	
Drift (Temp Stability)				±0.05% of Vo	out rated over 8	hours, constant li	ne and load.	
Temp Coefficient (PP	M/°C)				2	200		
Pgm Accuracy (mV)			Digital: 0.	1% of Nominal	Output Voltage	/ Analog: 1.0% of	Nominal Output	/oltage
Pgm Resolution (mV)			2 TBA					
Meas Accuracy (mV)				0.2% of Se	et Output + 0.2%	6 of Nominal Outp	ut Voltage	
Meas Resolution					1	ГВА		
Transient Response			Re	covery time of 1	LmS (See Sectio	on 5.4.2 for the tra	nsient conditions))
Current Sense Metho	d				Intern	al Shunt		

OUTPUT - MODULE IN CURRENT SOURCE MODE

	1			_				
MODULE CODE	SL	SQ	ST	SW	S8	S1	SA	S2
Nominal Output (V)	12	24	32	48	80	125	200	250
Setting Range(A)	0.0 A - 200 A	0.0 A - 120 A	0.0 A - 90 A	0.0 A - 62.5 A	0.0 A - 37.5 A	0.0 A - 24 A	0.0 A - 15 A	0.0 A - 12 A
RMS Ripple (mA)	200	120	90	62.5	37.5	24	15	12
Line Regulation (mA)	200	120	90	125	93.75	48	50	24
Load Regulation (mA)	800	480	375	250	150	96	56	48
P-P Ripple (mA)					N/A			
Drift (Temp Stability)		±0.05% of I _c	out Rated over 8	3 hours, after 30	minute warm u	o, constant Line, I	Load and Temp	
Temp Co-efficient		Temp Co-effi		e = 300 PPM; All vel is [Temp Co-		are 200 PPM. le level)] + [4500	PPM of lout-max	
Pgm Accuracy (A)			0.7%	% digital, 1.3% a	nalog of rated o	utput max		
Pgm Resolution (mA)	79.2	26.4		13.2	10	5.2	2.6	2.6
Meas Accuracy				0.7% + 0.7% c	f Rated Output	Max		
Meas Resolution	79.2	26.4		13.2	10	5.2	2.6	2.6
Transient Response		0-63% output current change in 7.5 mSec, residual value 1%, settling time 35 mSec						
Current Sense Method		Internal Shunt / External Shunt						
Current Source -Prog applications MODULE CODE	,					, 	ТЗ	
Nominal Output (V)		TW						
			5	0			300	
			-	0 270				
Setting Range (A) RMS Ripple (mA)			0 -2				300	
Setting Range (A) RMS Ripple (mA)			0 -: 2	270			300 0 -50	
Setting Range(A) RMS Ripple (mA) *Line Regulation (mA)			0 -: 2 2	270 70			300 0 -50 50	
Setting Range (A)			0 -: 2 2 12	270 70 70			300 0-50 50 100	
Setting Range (A) RMS Ripple (mA) *Line Regulation (mA))		0-: 2 2 12 2 2	270 70 70 200			300 0-50 50 100 200	
Setting Range (A) RMS Ripple (mA) *Line Regulation (mA) *Load Regulation (mA) Pgm Resolution (mA))	Digital:	0 -: 2 2 12 2 12 2 7 F	270 70 70 00 00 3A	Analog: 1.3% of adjustabili	Rated Output Ma	300 0-50 50 100 200 TBA TBA	O/P Current
Setting Range (A) RMS Ripple (mA) *Line Regulation (mA) *Load Regulation (mA) Pgm Resolution (mA) Meas Resolution (mA) *Pgm Accuracy (A))	Digital:	0 -: 2 2 12 2 12 2 7 F	270 70 70 100 100 3A Output Max / A	0	ty)	300 0-50 50 100 200 TBA TBA	D/P Current
Setting Range (A) RMS Ripple (mA) *Line Regulation (mA) *Load Regulation (mA) Meas Resolution (mA) Meas Resolution (mA) *Pgm Accuracy (A))	Digital:	0 -: 2 12 12 2 7 1 2 7 1 0.7% of Rated	270 70 70 00 3A Output Max / A 0.7%	adjustabili + 0.7% of Ratec	ty)	300 0-50 50 100 200 TBA TBA ax (1% to 100% 0	O/P Current
Setting Range (A) RMS Ripple (mA) *Line Regulation (mA) *Load Regulation (mA) Pgm Resolution (mA) Meas Resolution (mA))	Digital:	0 -: 2 12 12 2 7 1 0.7% of Rated ±	270 70 70 00 3A Output Max / A 0.7%	adjustabili + 0.7% of Ratec	ty) I Output Max	300 0-50 50 100 200 TBA TBA ax (1% to 100% 0	O/P Current
Setting Range (A) RMS Ripple (mA) *Line Regulation (mA) *Load Regulation (mA) Pgm Resolution (mA) Meas Resolution (mA) *Pgm Accuracy (A) *Meas Accuracy *Drift (Temp Stability) Temp Coefficient – Mo (PPM of lout-max / °C) odule Level)	Digital:	0 -: 2 2 12 2 7 12 2 7 1 0.7% of Rated ± 3	270 70 70 200 3A Output Max / A 0.7% 0.05% of lout-m	adjustabili + 0.7% of Ratec nax over 8 hours	ty) I Output Max	300 0 -50 50 100 200 TBA TBA ax (1% to 100% of and load. 300	D/P Current
Setting Range (A) RMS Ripple (mA) *Line Regulation (mA) *Load Regulation (mA) Pgm Resolution (mA) Meas Resolution (mA) *Pgm Accuracy (A) *Meas Accuracy *Drift (Temp Stability) Temp Coefficient – Mo (PPM of lout-max / °C Temp Coefficient – Ra) bdule Level) ack Level	Digital:	0 -: 2 2 12 2 2 7 F 0.7% of Rated ± 3(270 70 70 00 3A Output Max / A 0.7% 0.05% of lout-m	adjustabili + 0.7% of Ratec nax over 8 hours (module level))	ty) I Output Max s, constant line a	300 0 - 50 50 100 200 TBA TBA ax (1% to 100% of ax (1% to 10% o	O/P Current
Setting Range (A) RMS Ripple (mA) *Line Regulation (mA) *Load Regulation (mA) Pgm Resolution (mA) Meas Resolution (mA) *Pgm Accuracy (A) *Meas Accuracy *Drift (Temp Stability) Temp Coefficient – Mo) odule Level) ack Level dershoot	Digital:	0 -: 2 2 12 2 7 12 2 7 10 2 7 10 7 8 0.7% of Rated 2 30 2 17 6 7 8 1 7 8 1 9 19 19 19 19 19 19 19 19 19 19 19 19	270 70 70 70 70 70 70 70 70 70 70 70 70 7	adjustabili + 0.7% of Ratec hax over 8 hours (module level)) ee Section 5.4.2	ty) I Output Max s, constant line a I + [4500ppm of I	300 0 -50 50 100 200 TBA TBA ax (1% to 100% of ax (1% to 10% of ax (1% to 10% of ax (1% to 10% of ax (1% to 10% of ax (1% of ax (1	O/P Current

ENVIRONMENTAL SPECIFICATIONS

Operating Conditions	ALL MODELS (Unless Otherwise Specified)
Operating Temperature	0 °C to +50 °C at 100% rated load.
Storage Temperature	-40 °C to +85 °C. For Liquid Cooled models, liquid must be drained before storage
Operating Humidity	20% - 90% non condensing
Storage Humidity	10% - 95% non condensing
Operating Altitude	Up to 9,842 feet above sea level (3,000 meters)
Storage Altitude	Up to 30,000 feet above sea level (9,144 meters)
Vibration	Operating Sinusoidal Vibration MIL-STD-810G Method 528 Procedure I (Type 1): NEBS Office Vibration Environment, Alternate Procedure Operating Random Vibration: IPC-9592B Class 1 Non-Operating Vibration (Packaged): IPC-9592B Class 1; MIL-STD-810G, Method 514.6, Procedure 1, Category 7, Table 514.6C-VII General Exposure
Shock	MIL-STD-810G Method 516.6 Procedures I, II, IV, VI
Shipping and Handling	NSTA for <100 lbs; MIL-STD-2073-1 >100 lbs
Cooling and Audible Noise	<65 dBA with 80% load @ 30 °C at nominal input voltage with Smart Fan algorithm to be optimized based on module and rack thermal sensors. When modules are inhibited via software control, the fan speed is reduced to idle and acoustic noise is <46 dBA. With modules off via front panel switch fans are at idle for 1 min, and off for 9 min.
Ingress Protection	Fan Cooled = IP20
Pollution Degree	2
RoHS Compliance	Yes

10 advancedenergy.com

ORDERING INFORMATION

CASE CODE iHP**XYA-		MODULE CODES -XYZ* (x4/x8)		PARALLEL/SERIES CASE CODE -XX-**		CONFCODE -X	MODCOD
							-XXX
Case Decoder	iHP**XYA	Module Decoder	xvz	First Digit	Second Digit	Special Configuration	Factory Assigned
* = Case	Power	X = Outpu	t Type	0 = None	0 = None		
	12 = 12 KW 19" Rack		S = Single O/P (1-Slot)	1 = Slot 1&2	P = Parallel	Blank = Standard Configuration Alpha Character = Special Set-up	
	24 = 24 KW 19" Rack			2 = Slot 2&3	S = Series		1
	24S = 24KW 19" Rack Short		T = Single O/P (3-Slot)	3 = Slot 3&4	1 = Combo 2 P/S		
K = Voltag	ge Range	V = Nomin	al Voltage	4 = Slot 4&5	2 = Combo 2 S/P		
	L = Low Range*180-264		A = 200V	5 = Slot 5&6	3 = Combo 3 P/P/S		
	H = High Range 342-528		B = Future	6 = Slot 6&7	4 = Combo 3 P/S/P	-	
	C = Canadian 540-660		C = Future	7 = Slot 7&8	5 = Combo 3 P/S/S	-	
Y = Input	Phase		D = Future	8 = Slot 1,2&3	6 = Combo 3 S/P/P		
	1 = Single Phase		L = 12 V	9 = Slot 1,2,3&4	7 = Combo 3 S/P/S		
	3 = 3-Phase		Q = 24 V	A = Slot 1,2,3,4&5	8 = Combo 3 S/S/P		
Z = Coolir	ng		T = 32 V	B = Slot 1,2,3,4,5&6	9 = Combo 4 P/P/P/S		
	A = Air Cooled		W = 48 V	C = Slot 1,2,3,4,5,6&7	A = Combo 4 P/P/S/P		
			8 = 80 V	D = Slot 1,2,3,4,5,6,7&8	B = Combo 4 P/P/S/S		
A = Acces	ssory Options		1 = 125 V	E = Slot 1&2; 3&4	C = Combo 4 P/S/P/P		
	Blank = Full control		2 = 250 V	F = Slot 1&2; 3&4; 5&6	D = Combo 4 P/S/P/S		
	1-9 = Future		3 = 300 V (12 KW ONLY)	G = Slot 1&2; 3&4; 5&6; 7&8	E = Combo 4 P/S/S/P		
			5 = 500 V (12 KW ONLY)	H = Slot 1,2&3; 4&5	F = Combo 4 P/S/S/S		
		Z=Mode	Blank = Standard	K = Slot 1,2&3; 4,5&6	H = Combo 4 S/P/P/S		
			P = Precision	L = Slot 1,2&3; 4,5&6; 7&8	J = Combo 4 S/P/S/P		
				M = Slot 1,2,3&4; 5&6	K = Combo 4 S/P/S/S		
				N = Slot 1,2,3&4; 5&6; 7&8	L = Combo 4 S/S/P/P		
				P = Slot 1,2,3&4; 5,6&7	M = Combo 4 S/S/P/S		
				R = Slot 1,2,3&4; 5,6,7&8	N = Combo 4 S/S/S/P		
				S = Slot 1,2,3,4&5; 6&7	_		
				T = Slot 1,2,3,4&5; 6,7&8	_		
				U = Slot 1,2,3,4,5&6; 7&8	_		
				Z=Special Defined by MOD Code			
				-** is allowed for secondary	series/parallel code		
				1 = Groups 1&2	P = Parallel		
				8 = Groups 1,2&3	S = Series		
				9 = Groups 1,2,3&4	1 = Combo 2 P/S		
				E = Groups 1&2; 3&4	2 = Combo 2 S/P		

*Lowest possible input for the 24 kW version is 187.5 Vac

ORDERING INFORMATION (CONTINUED)

MODEL NUMBER SHORTCUT

For repeated like modules in parallel or series, instead of listing all the same modules separated by a "-", you can simply list the module once and then follow by the number of times it repeats enclosed in parenthesis.

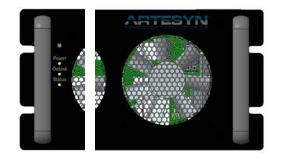
For example: iHP24H3A-SW-SW-SW-SW-SW-S8-S8-00

would become: iHP24H3A-SW(6)-S8(2)-00

PART NUMBER INFORMATION

Rack/Module	Description	Status		
RACK				
73-958-0001	19" 12KW Case High Line 3-Phase Air (iHP12H3A)	Released		
73-958-0001L	19" 12KW Case Low Line 3-Phase Air (iHP12L3A)	Released		
73-958-0001S	19" 12KW Case Low Line 1-Phase Air (iHP12L1A)	Released		
73-959-0001	19" 24KW Case High Line 3-Phase Air (iHP24H3A)	Released		
73-959-0001L	19" 24KW Case Low Line 3-Phase Air (iHP24L3A)	Released		
73-959-0001Z	19" 24KW Case 600V Canadian 3-Ph Y Air (iHP24C3A)	Released		
73-969-0001	19" 24KW SHORT Case High Line 3-Phase Air (iHP24SH3A)	Coming Soon		
73-969-0001L	19" 24KW SHORT Case Low Line 3-Phase Air (iHP24SL3A)	Coming Soon		
	3KW MODULES			
73-936-0012	12V 2400W Output Module (SL)	Released		
73-936-0024	24V 2880W Output Module (SQ)	Released		
73-936-0032	32V 3000W Output Module (ST)	Released		
73-936-0048	48V 3000W Output Module (SW)	Released		
73-936-0080	80V 3000W Output Module (S8)	Released		
73-936-0125	125V 3000W Output Module (S1)	Released		
73-936-0200	200V 3000W Output Module (SA)	Released		
73-936-0250	250V 3000W Output Module (S2)	Released		
	12KW MODULES			
73-938-0050	50V 12000W Output Module (TW)	Released		
73-938-0300	300V 12000W Output Module (T3)	Coming Soon		
	ACCESSORIES			
73-778-000A	PPCM (PowerPro Connect Module) Kit	Released		
73-778-001	3-Phase Low Line Config Kit	Released		
73-778-002	1 Phase Low Line Config Kit	Released		
73-778-003	Module Accessory Kit	Released		
73-778-004	2X Parallel Module Accessory Kit	Released		
73-778-005	3X Parallel Module Accessory Kit	Released		
73-778-006	4X Parallel Module Accessory Kit	Released		
73-778-007	5X Parallel Module Accessory Kit	Released		
73-778-008	6X Parallel Module Accessory Kit	Released		
73-778-009	7X Parallel Module Accessory Kit	Released		
73-778-010	8X Parallel Module Accessory Kit	Released		
73-778-011	Initial Series Module Accessory Kit	Released		
73-778-012	Subsequent Series Module Accessory Kit	Released		
73-778-013	CAN/RS485 Terminator	Released		
73-778-016	3-Phase High Line Config Kit	Released		
73-778-022	Blank Panel 73-778-022	Released		
73-778-023	iHP12 Isocomm board	Released		
73-778-024	iHP24 Isocomm board	Released		
73-778-026	iHP24 Cover Kit	Released		
73-778-027	iHP12 Cover Kit	Released		
73-778-029	iHP 8X IPROG Cable Assembly	Released		
73-778-030	iHP 4X IPROG Cable Assembly	Released		

Model	Weight
73-959-0001 iHP24	36.0 KG
73-959-0001Z iHP24C	35.0 KG
73-958-0001 iHP12	22.2 KG
73-936-0012 Module 3KW	2.2 KG
All other 3KW Module	2.0 KG
73-938-0050 Module 12KW	5.95 KG



CASE SPECS - OUTLINE DETAIL

Front Panel Standard Markings

(Standard for both 12 KW and 24 KW)

Input and Comms Standard Markings

View of iHP24L/H and iHP12L/H shown on top, iHP24C shown on bottom. Comms interface is horizontal on the iHP12L/H. See mechanical drawings for more details.

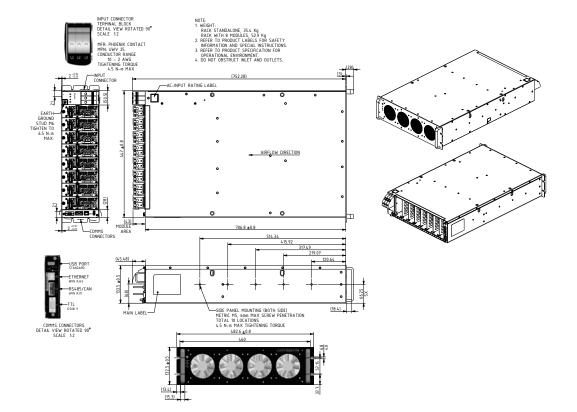
Condition	POWER LED	OUTPUT LED	SYSTEM STATUS LED
No AC	OFF	OFF	OFF
ISOCOM Start-Up Boot Load	BLINKING GREEN	OFF	OFF
SLEEP Mode (ON/OFF switch)	AMBER	OFF	OFF
Global Inhibit	SOLID GREEN	BLINKING GREEN	OFF
AC GOOD	SOLID GREEN	Х	X
AC FAULT (OV, UV)	SOLID RED	OFF	SOLID RED
Output GOOD	SOLID GREEN	SOLID GREEN	SOLID GREEN
Auto-recoverable Fault (OTP)	SOLID GREEN	OFF	SOLID AMBER
Latching Fault (OVP, UVP) or Internal Fault	SOLID GREEN	OFF	SOLID RED
FAN FAIL	SOLID GREEN	OFF	BLINKING RED
BOOTLOADING	Х	OFF	BLINKING AMBER

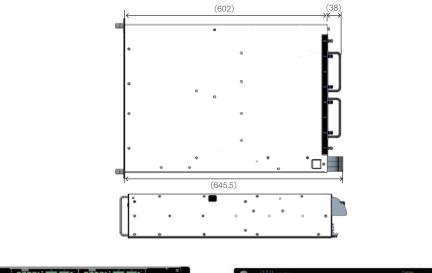
MODULE INTERFACE DETAIL (SAME FOR BOTH "S" AND "T" MODULES)

Module J1 Signals					
Pin #	Function	Function	Pin #		
5	4-20mA_IPROG	SYS_M_FAULT#	10		
4	0-5V_IPROG	SYS_M_ENABLE#	9		
3	0-10V_IPROG	SYS_RTN	8		
2	0-5V_VPROG	SYS_M_INHIBIT	7		
1	0-10V_VPROG	4-20mA_VPROG	6		

Module J2 Signals				
Pin #	Function	Function	Pin #	
6	NOT CONNECTED	ISHARE	12	
5	IMON	VMON	11	
4	D_RTN	ISHARE	10	
3	EXT_ISENSE+	EXT_ISENSE-	9	
2	D_RTN	V_SNS-	8	
1	V_SNS+	D_RTN	7	

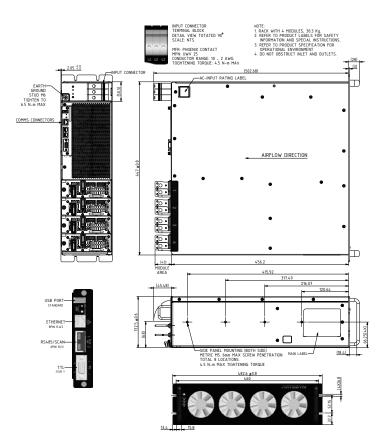
J1 mating housing Molex Micro-fit MPN: 43025-1000 J2 mating housing Molex Micro-fit MPN: 43025-1200 Crimp Terminal AWG 20-24 Crimp Terminal Molex MPN: 43030-0002

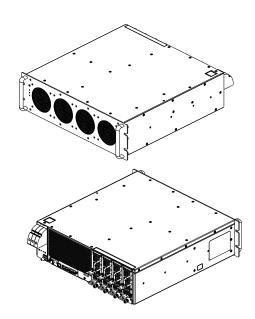

-MOLEX 43045-1201 -MOLEX 43045-1001



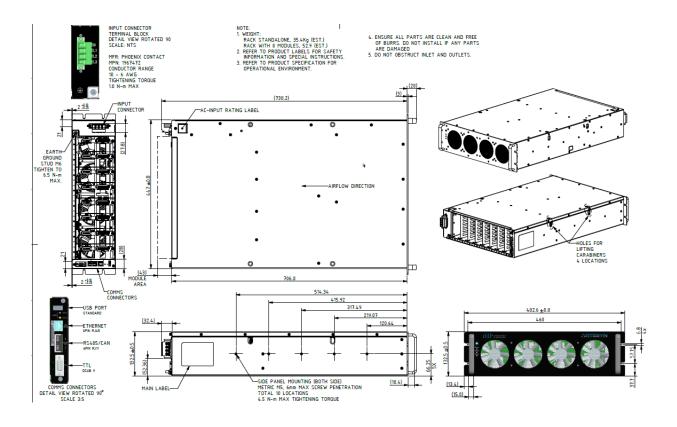
IHP24 SERIES - MECHANICAL DRAWINGS

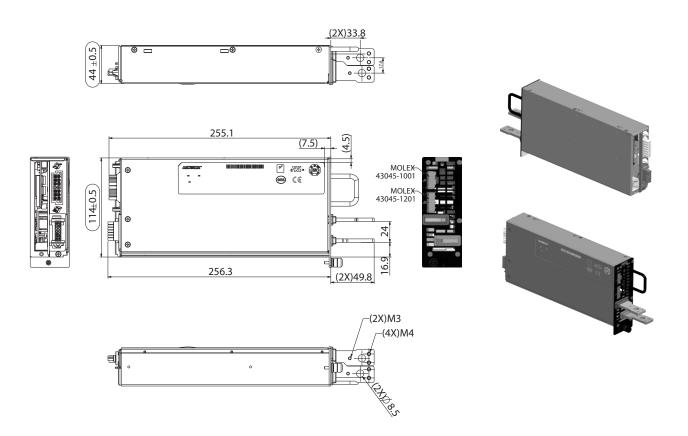
24KW AIR COOLED SHORT RACK MECHANICAL OUTLINE

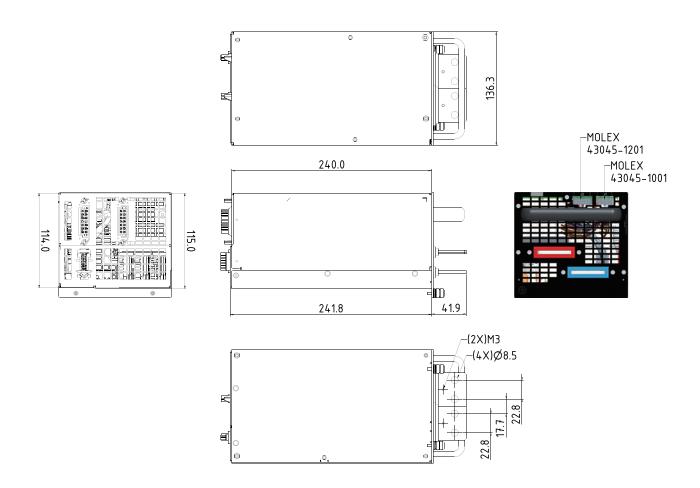




IHP12 SERIES - MECHANICAL DRAWINGS




IHP24C SERIES - MECHANICAL DRAWINGS


IHP MODULES - MECHANICAL DRAWINGS

12KW MODULES - MECHANICAL DRAWINGS

POWERPRO CONNECT MODULE

P@WERPRO

Part number:73-778-000A

The PowerPro Connect Module (purchased separately) can provide standard Ethernet interface via the internet to a cloud- and dashboard-based user-configurable GUI.

For international contact information, visit advancedenergy.com.

powersales@aei.com (Sales Support) productsupport.ep@aei.com (Technical Support) +1 888 412 7832 Specifications are subject to change without notice. Not responsible for errors or omissions. ©2020 Advanced Energy Industries, Inc. All rights reserved. Advanced Energy®, AE® and Artesyn™ are U.S. trademarks of Advanced Energy Industries, Inc.